TNSI — SDA type Pile LIFO TD/TP

Basé sur un document du

Les piles lycée Touchard-

Washington.

1. Mise en situation

Un éléve (Hugo) est en train de faire ses devoirs :
-« Hugo, ton frere au téléphone ! »
- Mettre les devoirs en attente (empiler(devoirs)) et répondre au téléphone ;
-« Hugo, il faut ouvrir la porte, il y a le facteur » ;
- Mettre le téléphone en attente (empiler(téléphone)) et aller ouvrir la porte ;
- Le facteur a remis le colis ;

- Dépiler la tache en attente (téléphone) et terminer la conversation ;
- Dépiler la tache en attente (devoirs) et la terminer.

En informatique, une pile (en anglais stack) est une structure de données abstraite de type pile
LIFO (Last In First Out)

C’est le principe méme de la pile d’assiettes : c’est la derniére assiette posée sur la pile
d’assiettes sales qui sera lavée en premier.

Entrée

sommet Sortie

Dépiler

Empiler

téléphone
devoirs

Définition du type abstrait Pile LIFO (Last In, First Out : dernier entré, premier sorti)

* Représentation: [‘@’, ‘b’, ‘C’]
L'élément ‘a’ est le dernier de la pile, I'élément ‘c’ est le premier. Ainsi, le dernier élément
ajouté a la pile sera le premier a en étre retiré.

® Opérations :
creer(P) : création de la pile P vide

. — Pile
- empiler(P,element) : ajoute I'élément en dernier dans P
. Pile x élément — Pile
- depiler(P) : retire I'élément en dernier dans P
. Pile — Pile // précondition : P n’est pas vide (élément présent)
- longueur(P) : nombre d'éléments dans P
. Pile — Entier
- estVide : retourne Vrai si P est vide
. Pile — Booléen
- sommet : retourne le dernier élément de la pile
. Pile — Pile

Page 1/8

TNSI — SDA type Pile LIFO TD/TP

> Décontextualisation : La pile est composée d’éléments représentés sous forme d’une
liste

> Spécification :
- Entrée : Pile d’éléments ; éléments a ajouter ou retirer

- Sortie : Pile d’éléments modifiée
Réle : Ajouter ou retirer des éléments de la pile.
- Précondition : L’élément a retirer est présent dans la pile

> Principe de I'algorithme : On ajoute ou on extrait les éléments de la pile
Algorithme Script Python
Fonction creer() — Pile def creer():
pile —[]

retourner pile

Fonction longueur(pile) — Entier
retourner taille(pile) def longueur (pile) :

Fonction empiler(pile, element) — Pile
empiler(pile)

Fonction depiler(pile) — Pile def empiler(pile,element):
retourner depiler(pile)

Fonction estVide(pile) — Booléen

vide « faux def depiler(pile):
si pile =[] alors
vide « vrai
fin si
retourner vide def estVide(pile):

Fonction sommet(pile) — Pile
Si la pile n’est pas vide alors
retourner dernier élément de la pile
fin si

def sommet (pile) :

Page 2/8

TNSI — SDA type Pile LIFO TD/TP

Tests Résultats dans la console

pile = creer () ['A', IBI’ ICI]
empller(pile, A') Le sommet de la pile est C

empiler (pile, 'B') . .
empiler (pile, 'C") La liste est vide ? False

print (pile) La longueur de la liste est : 3
print ('Le sommet de la pile est', sommet (pile)) C

print ('La liste est vide ?',estVide (pile)) B

print ('La longueur de la liste

est :',longueur (pile)) A

print (depiler (pile)) La liste est vide ? True
print (depiler(pile)) La longueur de la liste est : 0
print (depiler (pile))

print ('La liste est vide ?',estVide (pile))

print ('La longueur de la liste

est :',longueur (pile))

Vous trouverez en annexe un script Python utilisant la programmation orientée objet.

> Complexité de I’algorithme : https://wiki.python.org/moin/TimeComplexity

- _Il termine car les opérations sur la pile élément se terminent.

- Il est correct car les éléments sont bien ajoutés ou retirés de la pile selon le principe
du dernier arrivé, premier sorti.

- Il prend un temps O(nombre d’éléments en attente) car les opérations sur la pile sont
en temps O(1) pour I'ajout d’'un élément et en O(1) pour le retrait du dernier élément.

Opération empiler(P,element) | append 0o(1)
Opération depiler(P) pop() 0o(1)

2. Partie 2 : exercices

Pour les exercices suivants, utiliser le script Python utilisant la programmation orientée objet en
annexe.

Exercice 2.1

Quel est le contenu de la pile aprés exécution du programme suivant ?

p = Pile() Pile p

p.empiler ('A'")
p.empiler ('B'")
p.empiler('C")
p (
p (

.depiler ()
.empiler ('
print (p)

D'")

Page 3/8

https://wiki.python.org/moin/TimeComplexity

TNSI — SDA type Pile LIFO TD/TP

Exercice 2.2

Compléter le programme suivant qui permute les deux éléments situés au sommet d’une pile
de taille au moins égale a 2.

Exemple :
Pile p Pile p
Avant Aprés
permutation permutation
Script python Résultat dans la console

p = Pile()

p.empiler ('A'") l \ B C
p.empiler ('B'")

p.empiler ('C'

)
print (p) A‘ : B

A compléter

print (p)

Exercice 2.3

Ecrire un programme qui dépile et renvoie le troisitme élément d’'une pile de taille au moins
égale a 3. Le premier et le deuxiéme élément devront rester au sommet de la pile.

Pile p Pile p Résultat dans la console
Avant Aprés
extraction extraction
D ABCD
D 3eme élément : B

ACD

>0 O

C
A

Page 4/8

TNSI — SDA type Pile LIFO TD/TP

Script python
p = Pile() # A compléter

p
p
p.empiler
p
p

3.Partie 3 : La vérification du bon parenthésage

Mr Dupond s’est encore trompé en voulant écrire un calcul sur son logiciel de traitement de
texte !

Un probleme fréquent d'un compilateur et des traitements de textes est de déterminer si les
parenthéses d'une chaine de caractéres sont balancées et proprement incluses 'une dans l'autre.

Par exemple, la chaine ((()) ())()) est bien parenthésée , tandis que les chaines)() ou ()) ne
le sont pas.

Principe :

Dans une boucle tant que, on empile les parenthéses ouvrantes, puis, quand on lit une
parenthése fermante, on vérifie qu’elle correspond au sommet de la pile.

- s'il n’y a pas correspondance, il y a une erreur de parenthésage.

- sinon il y a bien une correspondance, on dépile.

A la fin de la boucle, si la pile est n’est pas vide on renvoie faux sinon vrai.

Algorithme :
fonction bien_parenthese(txt : chaine de caractére) : booleen (() (()
verificateur <Vrai
instanciation de la pile p
indice < 0 * *

tant que verificateur est vrai et indice < longueur(txt):
si txt[indice] = "(" alors
p.empiler(txt[indice])
sinon si txt[indice] = ")" alors
si p.sommet() différent de "(" alors ((

_—

verificateur < False

elspe-;iepiler() (((()
4

fin si
fin si
indice <« indice+1

fin tant que

si p.estVide()=faux: Ii I
verificateur < False

retourner verificateur ((

Page 5/8

TNSI — SDA type Pile LIFO TD/TP

Compléter la fonction bien parenthese, qui retourne vraie si une chaine de caracteres est
bien parenthésée, et faux sinon. Visualiser I'exécution avec python tutor.

Script python Résultat dans la console
def bien parenthese (txt):

verificateur = True I r'
p = Pile() ue
indice = 0

A compléter

print (bien parenthese (" (3+2)+5% (2+8)"))
print (bien parenthese (" (3+2)+5* (2+8"))

4.Partie 4 : La notation polonaise inversée (NPI)

La notation polonaise inversée (NPI) (en anglais RPN pour Reverse Polish Notation),
également connue sous le nom de notation post-fixée, permet d'écrire de fagon non ambigué les
formules arithmétiques sans utiliser de parentheses.

Dérivée de la notation polonaise présentée en 1924 par le mathématicien polonais Jan
Lukasiewicz, elle s’en différencie par I'ordre des termes, les opérandes y étant présentées avant
les opérateurs et non I'inverse.

La notation post-fixée d’'une expression algébrique consiste a placer les opérateurs aprés son
ou ses opérandes.

Par exemple, I'addition de a et de b sera écrite "a b +" en notation post-fixe,
Par exemple, I'expression « 3 x (4 + 7) » peut s'écrire en NPl sous laforme 34 7 + *

L’intérét majeur de cette notation est qu'une expression post-fixée n'est jamais ambigué alors
que I'expression infixe "1 + 2 x 3" peut avoir deux significations : "(1 + 2) x 3" ou "1 + (2 x 3)",

Ce n’est jamais le cas d’'une expression post-fixée, ce qui rend lI'usage des parenthéses
superflu :

"1 2 + 3 x " ne peut étre compris que de cette fagon : "(12 +) 3 x"
= "123x+"decette fagon: "1 (23 x) +".

Elle est utilisée dans certains langages de programmation ainsi que pour certaines
calculatrices, notamment celles de la marque Hewlett-Packard.

Page 6/8

http://www.pythontutor.com/visualize.html#mode=edit

TNSI — SDA type Pile LIFO

TD/TP

L’évaluation d’'une expression postfixée se déroule en parcourant la liste des éléments et en

suivant les regles suivantes :

Si I'élément de la liste est un opérateur binaire f alors,
On dépile les deux éléments a et b les plus hauts, et on empile le résultat de f (a;b).

Sinon I'élément est un nombre, on I'empile ;

On retourne le résultat qui est le dernier élément de la pile.

Algorithme :

fonction polonaise(liste):valeur entiere ou réelle
instanciation de la pile p
pour chaque element dans la liste faire :
si element est parmi ['+','-',"",'/'] alors
b<—p.depiler()
a«—p.depiler()
r—calculer(a,b,element)
p.empiler(r)
sinon:
p.empiler(element)
fin si
fin pour
retourner p.depiler()
ou retourner p.sommet()

12+4x (12+4x |(12+4x
4 4 4
2
1 1 3
12+4x 12+4X
4 " Le résultat est
le seul et le
dernier
4 élément de la
pile.
3 12

Compléter la fonction qui évalue une expression écrite en NPI (on se limitera aux opérateurs

binaires). Visualiser I'exécution avec python tutor.

Script python

fonction qui calcule le résultat de
1'opération a op b

def calculer(a,b,op):
if op=="+":
resultat=a+b
elif op=='-"':
resultat=a-b
elif op=='*"':
resultat=a*b
elif op=='/":
if a!=0:
resultat=a/b
else:
print ("erreur division par
zéro")
return resultat

def polonaise(liste):
p = Pile()
A compléter

print (polonaise (
print (polonaise (
print (polonaise (

((

[2
[2
[2
print (polonaise([4

3,
3,
3,
3,

4
4
4
4

-1

6

20
0.6666666666666666

Page 7/8

http://www.pythontutor.com/visualize.html#mode=edit

TNSI — SDA type Pile LIFO

TD/ITP

Annexe : Piles avec la POO

Pile

+ pile[]

-__init__(}

-__len__{):int

- __repr__():str
+empiler(element : pile type)
+ depiler() : pile type

+estvide(): booleen

+sommet() : pile type

class Pile:
def init (self):
self.pile = []

def len (self):
return len(self.pile)

def repr (self):
return ' '.join([str(i) for i in self.pile])

def empiler(self, element):
self.pile.append(element)

def depiler(self):
return self.pile.pop ()

def estVide(self):
vide=False
if self.pile==[]:
vide=True
return vide

def sommet (self):
if not self.estVide():
return self.pile[-1]

p = Pile()

p.empiler ('A")
p.empiler ('B'")
p.empiler('C'")

print (p)

print ('Le sommet de la pile est',p.sommet())

print ('La liste est vide ?',p.estVide())
print ('La longueur de la liste est :',len(p))
print (p.depiler())

print (p.depiler())
'La liste est vide ?',p.estVide())
'La longueur de la liste est :',len(p))

print

(
(
(
print (p.depiler())
(
(
(
print (

Page 8/8

