
TNSI – SDA type Pile LIFO TD/TP

Les piles
Basé sur un document du

lycée Touchard-
Washington.

1. Mise en situation
Un élève (Hugo) est en train de faire ses devoirs :

- « Hugo, ton frère au téléphone ! »

- Mettre les devoirs en attente (empiler(devoirs)) et répondre au téléphone ;

- « Hugo, il faut ouvrir la porte, il y a le facteur » ;

- Mettre le téléphone en attente (empiler(téléphone)) et aller ouvrir la porte ;

- Le facteur a remis le colis ;

- Dépiler la tâche en attente (téléphone) et terminer la conversation ;

- Dépiler la tâche en attente (devoirs) et la terminer.

En informatique, une pile (en anglais stack) est une structure de données abstraite de type pile
LIFO (Last In First Out)

C’est le principe même de la pile d’assiettes : c’est la dernière assiette posée sur la pile
d’assiettes sales qui sera lavée en premier.

Définition du type abstrait Pile LIFO (Last In, First Out : dernier entré, premier sorti)

 Opérations :

- creer(P) : création de la pile P vide
 → Pile

- empiler(P,element) : ajoute l’élément en dernier dans P
 Pile x élément → Pile

- depiler(P) : retire l’élément en dernier dans P
 Pile → Pile // précondition : P n’est pas vide (élément présent)

- longueur(P) : nombre d'éléments dans P
 Pile → Entier

- estVide : retourne Vrai si P est vide
 Pile → Booléen

- sommet : retourne le dernier élément de la pile
 Pile → Pile

 Page 1/8

  Représentation : [‘a’, ‘b’, ‘c’]
 L’élément ‘a’ est le dernier de la pile, l’élément ‘c’ est le premier. Ainsi, le dernier élément
ajouté à la pile sera le premier à en être retiré.

TNSI – SDA type Pile LIFO TD/TP

 Décontextualisation : La pile est composée d’éléments représentés sous forme d’une
liste

 Spécification :
 Entrée : Pile d’éléments ; éléments à ajouter ou retirer

 Sortie : Pile d’éléments modifiée

 Rôle : Ajouter ou retirer des éléments de la pile.

 Précondition : L’élément à retirer est présent dans la pile

 Principe de l’algorithme : On ajoute ou on extrait les éléments de la pile

Algorithme Script Python

Fonction creer() → Pile
pile ← []
retourner pile

Fonction longueur(pile) → Entier
retourner taille(pile)

Fonction empiler(pile, element) → Pile
empiler(pile)

Fonction depiler(pile) → Pile
retourner depiler(pile)

Fonction estVide(pile) → Booléen
vide ← faux
si pile = [] alors

vide ← vrai
fin si
retourner vide

Fonction sommet(pile) → Pile
Si la pile n’est pas vide alors

retourner dernier élément de la pile
fin si

def creer():

def longueur(pile):

def empiler(pile,element):

def depiler(pile):

def estVide(pile):

def sommet(pile):

 Page 2/8

TNSI – SDA type Pile LIFO TD/TP

Tests Résultats dans la console
pile = creer()
empiler(pile,'A')
empiler(pile,'B')
empiler(pile,'C')
print(pile)
print('Le sommet de la pile est',sommet(pile))
print('La liste est vide ?',estVide(pile))
print('La longueur de la liste
est :',longueur(pile))
print(depiler(pile))
print(depiler(pile))
print(depiler(pile))
print('La liste est vide ?',estVide(pile))
print('La longueur de la liste
est :',longueur(pile))

['A', 'B', 'C']
Le sommet de la pile est C
La liste est vide ? False
La longueur de la liste est : 3
C
B
A
La liste est vide ? True
La longueur de la liste est : 0

Vous trouverez en annexe un script Python utilisant la programmation orientée objet.

 Complexité de l’algorithme : https://wiki.python.org/moin/TimeComplexity

 Il termine car les opérations sur la pile élément se terminent.

 Il est correct car les éléments sont bien ajoutés ou retirés de la pile selon le principe
du dernier arrivé, premier sorti.

 Il prend un temps O(nombre d’éléments en attente) car les opérations sur la pile sont
en temps O(1) pour l’ajout d’un élément et en O(1) pour le retrait du dernier élément.

Opération empiler(P,element) append O(1)

Opération depiler(P) pop() O(1)

2. Partie 2 : exercices

Pour les exercices suivants, utiliser le script Python utilisant la programmation orientée objet en
annexe.

Exercice 2.1

Quel est le contenu de la pile après exécution du programme suivant ?

p = Pile()

p.empiler('A')
p.empiler('B')
p.empiler('C')
p.depiler()
p.empiler('D')
print(p)

Pile p

 Page 3/8

https://wiki.python.org/moin/TimeComplexity

TNSI – SDA type Pile LIFO TD/TP

Exercice 2.2

Compléter le programme suivant qui permute les deux éléments situés au sommet d’une pile
de taille au moins égale à 2.

Exemple :
Pile p
Avant

permutation

Pile p
Après

permutation

C B

B C
A A

Script python Résultat dans la console
p = Pile()

p.empiler('A')
p.empiler('B')
p.empiler('C')
print(p)
A compléter

print(p)

A B C
A C B

Exercice 2.3

Ecrire un programme qui dépile et renvoie le troisième élément d’une pile de taille au moins
égale à 3. Le premier et le deuxième élément devront rester au sommet de la pile.

Pile p
Avant

extraction

Pile p
Après

extraction

Résultat dans la console

D A B C D
3eme élément : B
A C D

C D

B C
A A

 Page 4/8

TNSI – SDA type Pile LIFO TD/TP

Script python
p = Pile()

p.empiler('A')
p.empiler('B')
p.empiler('C')
p.empiler('D')
print(p)

A compléter

3. Partie 3 : La vérification du bon parenthésage

Mr Dupond s’est encore trompé en voulant écrire un calcul sur son logiciel de traitement de
texte !!!

Un problème fréquent d'un compilateur et des traitements de textes est de déterminer si les
parenthèses d'une chaîne de caractères sont balancées et proprement incluses l'une dans l'autre.

Par exemple, la chaîne ((()) ())() est bien parenthésée , tandis que les chaînes)() ou ()) ne
le sont pas.

Principe :

Dans une boucle tant que, on empile les parenthèses ouvrantes, puis, quand on lit une
parenthèse fermante, on vérifie qu’elle correspond au sommet de la pile.

- s’il n’y a pas correspondance, il y a une erreur de parenthésage.
- sinon il y a bien une correspondance, on dépile.
A la fin de la boucle, si la pile est n’est pas vide on renvoie faux sinon vrai.

Algorithme :

fonction bien_parenthese(txt : chaine de caractère) : booleen
 verificateur ←Vrai
 instanciation de la pile p
 indice ← 0
 tant que verificateur est vrai et indice < longueur(txt):
 si txt[indice] = "(" alors
 p.empiler(txt[indice])
 sinon si txt[indice] = ")" alors
 si p.sommet() différent de "(" alors

 verificateur ← False
 else:

 p.depiler()
fin si

 fin si
 indice ← indice+1
 fin tant que
 si p.estVide()=faux:
 verificateur ← False
 retourner verificateur

 Page 5/8

TNSI – SDA type Pile LIFO TD/TP

Compléter la fonction bien_parenthese,qui retourne vraie si une chaîne de caractères est
bien parenthésée, et faux sinon. Visualiser l’exécution avec python tutor.

Script python Résultat dans la console
def bien_parenthese(txt):
 verificateur = True
 p = Pile()
 indice = 0
 # A compléter

print(bien_parenthese("(3+2)+5*(2+8)"))
print(bien_parenthese("(3+2)+5*(2+8"))

True
False

4. Partie 4 : La notation polonaise inversée (NPI)

La notation polonaise inversée (NPI) (en anglais RPN pour Reverse Polish Notation),
également connue sous le nom de notation post-fixée, permet d'écrire de façon non ambiguë les
formules arithmétiques sans utiliser de parenthèses.

Dérivée de la notation polonaise présentée en 1924 par le mathématicien polonais Jan
Lukasiewicz, elle s’en différencie par l’ordre des termes, les opérandes y étant présentées avant
les opérateurs et non l’inverse.

La notation post-fixée d’une expression algébrique consiste à placer les opérateurs après son
ou ses opérandes.

Par exemple, l’addition de a et de b sera écrite "a b +" en notation post-fixe,

Par exemple, l’expression « 3 × (4 + 7) » peut s'écrire en NPI sous la forme 3 4 7 + *

L’intérêt majeur de cette notation est qu’une expression post-fixée n’est jamais ambiguë alors
que l’expression infixe "1 + 2 x 3" peut avoir deux significations : "(1 + 2) x 3" ou "1 + (2 x 3)",

Ce n’est jamais le cas d’une expression post-fixée, ce qui rend l’usage des parenthèses
superflu :

- "1 2 + 3 x " ne peut être compris que de cette façon : "(1 2 +) 3 x "

- "1 2 3 x +" de cette façon : "1 (2 3 x) +".

Elle est utilisée dans certains langages de programmation ainsi que pour certaines
calculatrices, notamment celles de la marque Hewlett-Packard.

 Page 6/8

http://www.pythontutor.com/visualize.html#mode=edit

TNSI – SDA type Pile LIFO TD/TP

L’évaluation d’une expression postfixée se déroule en parcourant la liste des éléments et en
suivant les règles suivantes :

Si l’élément de la liste est un opérateur binaire f alors,
On dépile les deux éléments a et b les plus hauts, et on empile le résultat de f (a;b).

Sinon l’élément est un nombre, on l’empile ;
On retourne le résultat qui est le dernier élément de la pile.

Algorithme :

fonction polonaise(liste):valeur entière ou réelle
 instanciation de la pile p
 pour chaque element dans la liste faire :
 si element est parmi ['+','-','*','/'] alors
 b←p.depiler()
 a←p.depiler()
 r←calculer(a,b,element)
 p.empiler(r)
 sinon:
 p.empiler(element)
 fin si
 fin pour
 retourner p.depiler()
ou retourner p.sommet()

Le résultat est
le seul et le
dernier
élément de la
pile.

Compléter la fonction qui évalue une expression écrite en NPI (on se limitera aux opérateurs
binaires). Visualiser l’exécution avec python tutor.

Script python
fonction qui calcule le résultat de
l'opération a op b

def calculer(a,b,op):
 if op=='+':
 resultat=a+b
 elif op=='-':
 resultat=a-b
 elif op=='*':
 resultat=a*b
 elif op=='/':
 if a!=0:
 resultat=a/b
 else:
 print("erreur division par
zéro")
 return resultat

def polonaise(liste):
 p = Pile()
 # A compléter

print(polonaise([2,3,'-']))
print(polonaise([2,3,'*']))
print(polonaise([2,3,'+',4,'*']))
print(polonaise([4,3,2,'*','/']))

-1
6
20
0.6666666666666666

 Page 7/8

http://www.pythontutor.com/visualize.html#mode=edit

TNSI – SDA type Pile LIFO TD/TP

Annexe : Piles avec la POO

class Pile:
 def __init__(self):
 self.pile = []

 def __len__(self):
 return len(self.pile)

 def __repr__(self):
 return ' '.join([str(i) for i in self.pile])

 def empiler(self, element):
 self.pile.append(element)

 def depiler(self):
 return self.pile.pop()

 def estVide(self):
 vide=False
 if self.pile==[]:
 vide=True
 return vide

 def sommet(self):
 if not self.estVide():
 return self.pile[-1]

p = Pile()

p.empiler('A')
p.empiler('B')
p.empiler('C')
print(p)
print('Le sommet de la pile est',p.sommet())
print('La liste est vide ?',p.estVide())
print('La longueur de la liste est :',len(p))
print(p.depiler())
print(p.depiler())
print(p.depiler())
print('La liste est vide ?',p.estVide())
print('La longueur de la liste est :',len(p))

 Page 8/8

